首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42529篇
  免费   5871篇
  国内免费   3211篇
电工技术   4090篇
技术理论   1篇
综合类   3725篇
化学工业   9070篇
金属工艺   4545篇
机械仪表   2059篇
建筑科学   1675篇
矿业工程   822篇
能源动力   1558篇
轻工业   2207篇
水利工程   517篇
石油天然气   1839篇
武器工业   425篇
无线电   7402篇
一般工业技术   6168篇
冶金工业   2199篇
原子能技术   442篇
自动化技术   2867篇
  2024年   75篇
  2023年   781篇
  2022年   1099篇
  2021年   1430篇
  2020年   1559篇
  2019年   1512篇
  2018年   1367篇
  2017年   1621篇
  2016年   1673篇
  2015年   1719篇
  2014年   2388篇
  2013年   2519篇
  2012年   2915篇
  2011年   2906篇
  2010年   2110篇
  2009年   2386篇
  2008年   2266篇
  2007年   2718篇
  2006年   2600篇
  2005年   2147篇
  2004年   1776篇
  2003年   1807篇
  2002年   1526篇
  2001年   1402篇
  2000年   1207篇
  1999年   952篇
  1998年   815篇
  1997年   740篇
  1996年   617篇
  1995年   588篇
  1994年   505篇
  1993年   347篇
  1992年   342篇
  1991年   260篇
  1990年   232篇
  1989年   216篇
  1988年   109篇
  1987年   73篇
  1986年   53篇
  1985年   44篇
  1984年   50篇
  1983年   29篇
  1982年   34篇
  1981年   25篇
  1980年   24篇
  1979年   8篇
  1978年   6篇
  1977年   6篇
  1975年   5篇
  1951年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
采用直流磁控溅射和后退火氧化工艺在p型GaAs单晶衬底上成功制备了n-VO_2/pGaAs异质结,研究了不同退火温度和退火时间对VO_2/GaAs异质结性能的影响,并分析其结晶取向、化学组分、膜层质量以及光电特性。结果表明,在退火时间2 h和退火温度693 K下能得到相变性能最佳的VO_2薄膜,相变前后电阻变化约2个数量级。VO_2/GaAs异质结在308 K、318 K和328 K温度下具有较好的整流特性,对应温度下的阈值跳变电压分别为6.9 V、6.6 V和6.2 V,该结果为基于VO_2相变特性的异质结光电器件的设计与应用提供了可行性。  相似文献   
32.
CoCrNiCux (x=0.16,0.33,0.75,and 1) without macro-segregation medium-entropy alloys (MEAs) was prepared using laser directed energy deposition (LDED).The microstructure and mechanical properties of CoCrNiCux alloys with increas-ing Cu content were investigated.The results indicate that a single matrix phase changes into a dual-phase structure and the tensile fracture behaviors convert from brittle to plastic pattern with increasing Cu content in CoCrNiCux alloys.In addi-tion,the tensile strength of CoCrNiCux alloys increased from 148 to 820 MPa,and the ductility increased from 1 to 11%with increasing Cu content.The nano-precipitated particles had a mean size of approximately 20 nm in the Cu-rich phase area,and a large number of neatly arranged misfit dislocations were observed at the interface between the two phases due to Cu-rich phase precipitation in the CoCrNiCu alloy.These misfit dislocations hinder the movement of dislocations during tensile deformation,as observed through transmission electron microscopy.This allows the CoCrNiCu alloy to reach the largest tensile strength and plasticity,and a new strengthening mechanism was achieved for the CoCrNiCu alloy.Moreover,twins were observed in the matrix phase after tensile fracture.Simultaneously,the dual-phase structure with different elastic moduli coordinated with each other during the deformation process,significantly improving the plasticity and strength of the CoCrNiCu alloy.  相似文献   
33.
Phase change memory (PCM) is an emerging non-volatile data storage technology concerned by the semiconductor industry. To improve the performances, previous efforts have mainly focused on partially replacing or doping elements in the flagship Ge-Sb-Te (GST) alloy based on experimental “trial-and-error” methods. Here, the current largest scale PCM materials searching is reported, starting with 124 515 candidate materials, using a rational high-throughput screening strategy consisting of criteria related to PCM characteristics. In the results, there are 158 candidates screened for PCM materials, of which ≈68% are not employed. By further analyses, including cohesive energy, bond angle analyses, and Born effective charge, there are 52 materials with properties similar to the GST system, including Ge2Bi2Te5, GeAs4Te7, GeAs2Te4, so on and other candidates that have not been reported, such as TlBiTe2, TlSbTe2, CdPb3Se4, etc. Compared with GST, materials with close cohesive energy include AgBiTe2, TlSbTe2, As2Te3, TlBiTe2, etc., indicating possible low power consumption. Through further melt-quenching molecular dynamic calculation and structural/electronic analyses, Ge2Bi2Te5, CdPb3Se4, MnBi2Te4, and TlBiTe2 are found suitable for optical/electrical PCM applications, which further verifies the effectiveness of this strategy. The present study will accelerate the exploration and development of advanced PCM materials for current and future big-data applications.  相似文献   
34.
Energy storage capacitors with high recoverable energy density and efficiency are greatly desired in pulse power system. In this study, the energy density and efficiency were enhanced in Mn-modified (Pb0.93Ba0.04La0.02)(Zr0.65Sn0.3Ti0.05)O3 antiferroelectric ceramics via a conventional solid-state reaction process. The improvement was attributed to the change in the antiferroelectric-to-ferroelectric phase transition electric field (EF) and the ferroelectric-to-antiferroelectric phase transition electric field (EA) with a small Mn addition. Mn ions as acceptors, which gave rise to the structure variation, significantly influenced the microstructures, dielectric properties and energy storage performance of the antiferroelectric ceramics. A maximum recoverable energy density of 2.64 J/cm3 with an efficiency of 73% was achieved when x = 0.005, which was 40% higher than that (1.84 J/cm3, 68%) of the pure ceramic counterparts. The results demonstrate that the acceptor modification is an effective way to improve the energy storage density and efficiency of antiferroelectric ceramics by inducing a structure variation and the (Pb0.93Ba0.04La0.02)(Zr0.65Sn0.3Ti0.05)O3-xMn2O3 antiferroelectric ceramics are a promising energy storage material with high-power density.  相似文献   
35.
宫明明 《中国酿造》2021,40(12):175
该研究建立了一种亲水交互作用色谱-串联质谱(HILIC-MS/MS)法测定动物源运动食品中潮霉素B、新霉素、安普霉素3种氨基糖苷类抗生素残留量的方法。结果表明,样品经Sielc Obelisc R柱分离,采用0.1%甲酸水溶液-乙腈梯度洗脱,可以实现3种目标物组分的分离。在此条件下,3种氨基糖苷类抗生素在5~500 ng/mL的质量浓度范围内线性关系良好,相关系数R2为0.999 5~0.999 9,检出限均为15 μg/kg,定量限均为50 μg/kg,保留时间的日间和日内相对标准偏差(RSD)分别为3.5%~7.9%和3.5%~4.1%,峰面积的日间和日内RSD分别为3.6%~7.4%和3.2%~3.9%,加标回收率为85.7%~93.6%,回收率试验结果的RSD为3.1%~5.2%。该方法可以满足动物源运动食品中3种氨基糖苷类抗生素的检测需求。  相似文献   
36.
To improve the properties of diblock copolystyrene-based anion exchange membranes (AEMs), a series of AEMs with comb-shaped quaternary ammonium (QA) architecture (QA-PSm-b-PDVPPAn-xC where x denotes the number of carbon atoms in different alkyl tail chains and has values of 1, 4, 8, and 10 and C denotes carbon) were designed and synthesized via subsequent quaternization reactions with three different alkyl halogens (methyl iodide and N-alkane bromines (CH3[CH2] x-1Br where x = 4, 8, and 10). Compared with triblock analogues quaternized with methyl iodide in our previous research, QA-PSm-b-PDVPPAn-xC (x = 4, 8, and 10) AEMs are more flexible with the introduction of a long alkyl tail chain; this probably impedes crystallization of the rigid polystyrene-based main chain and induces sterically adjustable ionic association. An increase in the pendant alkyl tail chain length generally led to enhanced microphase separation of the obtained AEMs, and this was confirmed using small-angle X-ray scattering and atomic force microscopy. The highest conductivity (25.5 mS cm−1) was observed for QA-PS120-b-PDVPPA80-10C (IEC = 1.94 meq g–1) at 20 °C. Furthermore, the water uptake (<30%) and swelling ratio (<13.1%) of QA-PSm-b-PDVPPAn-xC AEMs are less than half of these corresponding values for their triblock counterparts. The QA-PS120-b-PDVPPA80-10C membrane retained a maximum stability that was as high as 86.8% of its initial conductivity after a 40-day test (10 M NaOH, 80 °C), and this was probably because of the steric shielding of the cationic domains that were surrounded by the longest alkyl tail chains. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47370.  相似文献   
37.
In this study, the liquid phase plasma (LPP) was irradiated over pure zinc oxide (ZnO), strontium (Sn) doped ZnO, and Sn doped ZnO/CNTs photocatalysts for hydrogen evolution from pure water and from aqueous solution of water-methanol. The possible relationship between hydrogen evolution and optical emissions from LPP for activation of ZnO based photocatalysts was revealed. The role of carbon nanotubes (CNTs) as a support material for improved photocatalytic hydrogen evolution was also investigated in this study. The photocatalytic hydrogen evolution from water mixed methanol under LPP irradiation was compared with pure water splitting. The photolysis produced negligible amount of hydrogen due to minimal photodecomposition of water molecules under LPP irradiation. The plasma born reactive species also played crucial role in photolysis. However, the hydrogen evolution rate increased significantly in the presence of ZnO photocatalyst. Further improvement in hydrogen evolution rate was noticed on Sn doping of ZnO and compositing with CNTs. The highest hydrogen evolution rate of 11.46 mmh−1g−1 from water mixed methanol was achieved with Sn doped ZnO/CNTs photocatalyst. This hydrogen evolution rate from water-methanol solution was 9 times higher than from the splitting of pure water. This hydrogen evolution rate is attributed to excessive production of hydroxyl radicals, red shift in optical band gap of Sn doped ZnO/CNTs photocatalyst, slow electron-hole recombination and fast decomposition of methanol as sacrificial reagent.  相似文献   
38.
The influence of phase composition and microstructure of Ti42.75Zr27Mn20.25V10 alloy on its hydrogenation kinetic and phase composition of hydrogenated product was studied. It is established that the process of dissociation of hydrogen molecules begins on the surface of Laves phase crystallites. The dissolution of atomic hydrogen in the material volume leads to the formation of cracks in the intermetallic crystallites, which further appear as additional centers of dissociation of hydrogen molecules and noticeably accelerate the diffusion of hydrogen into the bulk material. It was shown that the Laves phase acts as a donor of atomic hydrogen for the BCC solid solution during hydrogenation of two-phase structure, initiating intensive hydrogenation of the BCC phase at room temperature.  相似文献   
39.
Propylene molecule owns two active sites, the direct epoxidation of propylene by dioxygen is still a challenge due to the limitation of selectivity. In this work, the direct liquid-phase propylene aerobic epoxidation protocol by chloride manganese meso-tetraphenylporphyrin (MnTPPCl) was developed. The conversion of propylene was 12.7%, and the selectivity towards PO (propylene oxide) reached up to 80.5%. The formation of PO was attributed to the mechanism via high-valent Mn species, which was confirmed by means of in situ UV–vis spectrum.  相似文献   
40.
Core–rim structures were observed as common features in Y-α-SiAlON ceramics hot-pressed between 1550?1950 °C. We found most dopants were taken into α’-rims, and a transition layer grown first on α-cores from liquid-phase over-saturated with metal solutes. Elongated β’-grain were formed as minor phase with α’- or AlN-cores thus only after the α’ matrix had consumed up all Y solutes, revealing that the α’ → β’ transformation is controlled by the transient liquid-phase and similar defects and dangling bonds could be detected in both SiAlON phases by cathodoluminescence. Quantitative assessment of Ym/3Si12?(m+n)Alm+nOnN16?n demonstrates the multiphase evolution, initiated by over-saturation of Y solutes at low temperatures thus retaining α-phase as cores to lower the infra-red transmittance, dictated by homogenization of Al solutes at higher temperature. The elimination of those phase boundaries leads to better dopant and sintering design for achieving transparent and high-performance SiAlON ceramics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号